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Abstract Analytical mathematics and digital simulation
are used to predict the response, to a potential jump, of the
junction between insulating and conducting regions of an
electrode. The simulation is carried out differentially and
employs other novel features. Concentrations in the vicinity
of edges of positive and negative curvatures, as well as
straight edges, are analyzed by the model and thereby the
faradaic current densities and currents are predicted. It is
shown that, in addition to the well-understood cottrellian
current arising from the surface of the conducting electrode,
currents are generated that are proportional to the length of
the edge and to its curvature. These results are then applied
to inlaid disks and to partially blocked electrodes. The
possibility is explored of using the response to a potential
step to gain information on the geometry of a partially
blocked electrode.
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Introduction

Solid electrodes are wont to display heterogeneity for
various reasons: on account of the exposure of different
crystal faces, from the preferential oxidation of certain sites,
from the presence in the conducting phase of impurities or
alloying elements, from contamination by detritus, and

from other causes. Such surface heterogeneity is, of course,
a disquieting complication for electrochemists, though it
can sometimes be turned to advantage [1]. The simplest
type of inhomogeneity is the partial occlusion of an
otherwise uniform electrode by a surface feature that
effectively prevents the electrode process from occurring
on some fraction of the electrode. This “partial blocking” of
an electrode has been examined by a number of authors
[2–5] for a variety of repeating or random patterns of the
occluding agent. The feature possessed by partially blocked
electrodes that is absent from naked electrodes is the
pronounced presence of edges; that is, junctions between
conducting portions and insulating portions of the surface.
The purpose of this article is to examine the electrochem-
ical properties of edges, to show how they affect voltam-
metry, and to discuss how these properties might illuminate
electrode heterogeneity.

Throughout this article, we consider only flat conductors
that share their surface with a coplanar insulator. In early
sections, attention is confined to a small fragment of edge,
but in a later section, we return to the consideration of the
electrochemistry of an electrode with multiple edges and
show how the chronoamperometric response of a partially
blocked electrode can provide information on the configu-
ration of the blockage.

We address edged electrodes, previously inactive, sub-
jected to the simplest voltammetric perturbation—the
imposition of a totally concentration-polarizing potential
step—but the same principles apply to other experiments.
In the immediate aftermath of the potential jump, the
faradaic response will be dominated by the cottrellian
current arising from the conducting portion of the plane, but
as time progresses the current will significantly exceed that
predicted by the Cottrell equation. The excess current,
beyond the cottrellian component, is associated with the
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conductor/insulator junction near which the current density
is enhanced. The electrochemistry at such edges has
received little voltammetric attention, but is the main
preoccupation of the present study.

Figure 1 is a plan view of three edge fragments in which
an electronic conductor meets an adjacent insulator. The
edge in diagram (ii) is linear, this being the simplest
junction between a conductor and a coplanar insulator. In
diagram (i), the edge is concave, whereas in (iii) the edge is
convex (from the viewpoint of the conductor). A plane edge
fragment has two properties: length and curvature. The
lengths of the three edges in Fig. 1 are all :. Curvature is
assigned to a curve at a particular point by fitting a circle to
the curve at the point in question; the magnitude of the
curvature is then the reciprocal of the radius of that circle.
Sign is (arbitrarily) allocated to the curvature κ such that
the edges for cases (i), (ii), and (iii) have positive, zero, and
negative curvatures, respectively. An important property of
the edge fragment is the product κ : of its curvature and its
length: this is a dimensionless quantity that crops up
repeatedly in the present article; it equals the angle through
which the edge turns. For the sake of definiteness, we
initially choose to study curved edges of a length such that
kj j‘ ¼ 1, so that the angle turned is one radian, as
illustrated. Close to the edge, that is, at small values of x
in the three diagrams, the excess current density would be
expected to differ minimally from one case compared with
another, but as time progresses the three edges will behave
differently, in ways that we seek to discover.

There are several elements in the present research. In the
first and second sections, the concentration and current
density distributions in the vicinity of a straight edge, case
(ii), are addressed. This is a topic that can be handled by

analytical mathematics. In later sections, we develop and
apply “differential simulation” to explore the corresponding
properties of curved edges, going on to measure the excess
current produced by these edges. Finally, we show how the
voltammetric current can throw light on the configuration
of a partially blocked electrode.

Concentrations near a straight edge, by mathematical
analysis

Because its lack of curvature is a simplifying feature, classical
mathematical techniques are able to predict the chronoam-
perometric response of the edge diagrammed in Fig. 1 (ii).
Some 28 years ago, this geometry was investigated [6] but,
because that analysis was not entirely convincing, it is
treated again here by a superior procedure.

Figure 2 shows a linear edge in three-dimensional
cartesian coordinates (x, y, z), with z representing distance
from the (insulator or conductor) surface into the electrolyte
solution. The x>0 half of the z=0 plane is occupied by
the electrochemically active conducting surface, whereas
the x<0 half is the surface of a coplanar insulator. Thus, the
(x=0, −∞<y<∞, z=0) line is the edge separating the two
half-planes. An electrolyte solution containing an electro-
labile substrate occupies the entire z≥0 space. This solute
species had a uniform concentration cb prior to time t = 0;
at that instant, the concentration on the electrode surface
became zero permanently. Because we are assuming that
diffusion is the sole operative transport mechanism, Fick’s
second law in the form

@2c

@x2
þ @2c

@z2
¼ 1

D

@c

@t
ð1Þ

applies, where c denotes the concentration of the electrolabile
species and D is its diffusivity. The y coordinate is absent
from this equation because translational symmetry exists
along that axis. We seek to ascertain the concentration
distribution at times t>0, especially in the vicinity of the edge.

Because the solution of our problem must be of the form
c=cbf(x, z, D, t), dimensional constraints make it evident

x xx

(iii)(i) (ii)

Fig. 1 Each of these three plan diagrams shows a fragment of an
edged electrode, each edge being of length :. Hatching is used to
denote the conductor, whereas the adjoining insulator is shown
shaded. In (i), the junction is concave with a positive curvature κ; in
(ii), the junction is linear (κ=0); in (iii), the junction is convex with κ
negative. In all cases, x represents distance measured normally from
the edge across the conducting face of the electrode

z

x

Fig. 2 The cartesian and polar coordinate systems used to analyze
straight electrode edges. The y-axis is perpendicular to the plane of the
paper. As in Fig. 1, hatching represents the conductor with shading
indicating the insulator. Electrolyte solution occupies the space above
the horizontal plane
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that the function f must operate on such dimensionless
groups as x

� ffiffiffiffiffi
Dt

p
; z2 þ x2ð Þ� Dtð Þ and z=x. By adopting

these ratios as the pertinent quantities, the number of
independent variables may be reduced to two.

The origin line, x=z=0, has no special significance in a
cartesian system of coordinates, whereas this line is clearly
unique in the chronoamperometric experiment. According-
ly, it is preferable to convert to a polar system, which we do
by making the temporary replacements

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

4Dt

r
ð2Þ

and

q ¼ arctan
z

x

� �
ð3Þ

The y coordinate remains an unimportant third dimension.
We need to recast Eq. (1) in terms of the new coordinate
pair. This task requires straightforward application of
standard partial differentiation techniques [7] but, because
the derivation is lengthy, details are omitted. The surpris-
ingly simple result is

@2c

@r2
þ 1

r
þ 2r

� �
@c

@r
þ 1

r2
@2c

@q2
¼ 0 ð4Þ

We seek to solve this equation subject to conditions that
apply during our potential-leap experiment. These include
the requirement that

c ¼ cb r ! 1; q 6¼ 0 ð5Þ
together with the boundary conditions

c ¼ 0 q ¼ 0; r 6¼ 0 ð6Þ
and

@c

@q
¼ 0 q ¼ p; r 6¼ 0 ð7Þ

The last two constraints reflect, respectively, the complete
concentration polarization of the conductor and the lack of
any flux across the insulator surface.

A separability assumption [8, 9] will now be made. By
setting

c r; qð Þ ¼ cb R rð ÞD qð Þ ð8Þ
it is postulated that the bivariate c function can be replaced
by a product of two univariate functions. Such an
assumption is often, though not always, successful in
resolving a partial differential equation into ordinary
differential equations. Here, the adoption of (8) leads from
(4) to

r2

R

d2 R

d r2
þ rþ 2r3

R

dR

d r
¼ �1

D

d2 D

d q2
ð9Þ

The right-hand member of this equation is independent of
ρ, whereas its left side is independent of θ. The inescapable
conclusion is that each side equals the same constant, which
we take to be positive and, for future convenience,
represented by μ2/4.

The equating of the right-hand member of (9) to μ2/4
leads to

d2 D

d q2
¼ �m2D

4
ð10Þ

Subject to the requirement, stemming from condition (6),
that Θ be zero when θ=0, a solution of differential equation
(10) is

D ¼ constantð Þ sin mq
2

� 	
ð11Þ

However, through condition (7), there is also the constraint
that dΘ /dθ be zero when θ=π. This demands that μ be an
odd integer of either sign. Inasmuch as negative integers in
(11) merely duplicate their positive brethren, we henceforth
ignore the negative option and allow μ to adopt solely the
values 1, 3, 5,⋯.

When the left-hand moiety of (9) is equated to μ2/4, that
equation becomes

r2
d2 R

d r2
þ rþ 2r3

 � dR

d r
� m2 R

4
¼ 0 m ¼ 1; 3; 5; � � � ð12Þ

By making the substitution R(ρ)=(ρ2 /2)μ /4H(ρ2) and
thereby changing first the dependent and then the indepen-
dent variable, Eq. (12) is converted first to

r
d2 H

d r2
þ 1þ mþ 2r2

 � dH

d r
þ mrH ¼ 0 ð13Þ

and thence to

r2
d2 H

dðr2Þ2 þ 1þ m
2
þ r2

� � dH

dðr2Þ þ
m
4
H ¼ 0 ð14Þ

This is a confluent hypergeometric differential equation
[10] in −ρ2. Second order ordinary differential equations,
such as this, invariably have two alternative solutions, but
in this case one of these is imaginary. The real solution is

H r2

 � ¼ constantð Þexp �r2


 �
M 1þ 1

4m; 1þ 1
2m; r

2

 � ð15Þ

where M( , , ) is a Kummer function [11, chap 47].
Returning to the original radial variable, we find

R rð Þ ¼ wm rm=2 exp �r2

 �

M 1þ1
4m; 1þ 1

2m; r
2


 � ð16Þ

to be the solution to the radial moiety of the straight edge
problem. Here wμ is a presently arbitrary weighting factor
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associated with the μ parameter. An alternative representa-
tion of R(ρ) makes use of the identity

M 1þ1
4m; 1þ 1

2m; r
2


 � ¼ *
m
4
þ 1

2

� �
4

r2

� 
m
4�1

2

exp
r2

2

� �
Im
4�

1
2

r2

2

� �
þ Im

4þ
1
2

r2

2

� �� 
 ð17Þ

involving a pair of modified Bessel functions [11, chap 50].
We are now in a position to assemble the complete

solution. It must be expected that the solution will involve a
collection of μ values, rather than just one, so the overall
solution is

c r; qð Þ ¼ cb exp �r2

 �

X1
m¼1;3;���

wm rm=2M 1þ1
4m; 1þ 1

2m; r
2


 �
sin 1

2mq

 �

ð18Þ
It remains to identify the wμ weighting factors, for which
purpose condition (5) will be employed. It is known [11,
chap 47] that, as its argument u approaches infinity, the
Kummer function M(a, c, u) approaches * cð Þua�c

exp uð Þ=* að Þ and therefore

c r ! 1; qð Þ ¼ cb
X1

m¼1;3;���

* 1þ 1
2m


 �
* 1þ 1

4m

 � wm sin 1

2mq

 � ð19Þ

where Г( ) denotes a gamma function [11, chap 43]. To
satisfy condition (5), the summation in (19) must equal
unity for all non-zero values of θ. On comparison of this
equation with the well-known Fourier seriesX1
m¼1;3;���

sin 1
2mq


 �
m

¼ p
4

0 < q < p ð20Þ

it is evident that condition (5) is satisfied only if

wm ¼ 4

mp

* 1þ 1
4m


 �
* 1þ 1

2m

 � ¼ 2* m=4ð Þ

mp* m=2ð Þ m ¼ 1; 3; 5; � � � ð21Þ

With this identification inserted, the full solution becomes

c r; qð Þ ¼ 2cb

p
exp �r2


 �
X1

m¼1;3;���

* m=4ð Þ
m* m=2ð Þ r

m=2M 1þ1
4m; 1þ 1

2m; r
2


 �
sin 1

2mq

 �
ð22Þ

or, on reverting to the original cartesian coordinates,

c x; z; tð Þ ¼ 2cb

p
exp

�x2 � z2

4Dt

� 	 X1
m¼1;3;:���

* 1
4 m

 �

m* 1
2 m


 � x2 þ z2

4Dt

� �m
4

M 1þ m
4
; 1þ m

2
;
x2 þ z2

4Dt

� �
sin

m
2
Arctan

z

x

� �n o
ð23Þ

In comprehensive application, the multivalued Arctan(z /x)
function in Eq. (23) is replaced by 1

2 p � 1þ sgn xð Þ�f
sgn x2ð Þg 1

2p � arcsin zj j� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
 �� �
to permit evaluation

for all values of x and z (except when both are zero) and to
allow extension to all quadrants of the x, z plane. Although
the third or fourth quadrants are of no interest here, it
should be noted that Eq. (23) also applies to the problem in
which a thin electrode sheet is immersed in an electrolyte
solution without any proximal insulator.

As expected, Eq. (23) predicts an approach of c(x, z, t) to
cb at large positive values of z and large negative values of
x, whereas in the limit of large positive x, it reduces to the
cottrellian result

c x ! 1; z; tð Þ ¼ cberf
zffiffiffiffiffiffiffiffi
4Dt

p
� 	

¼ 2cbffiffiffi
p

p zffiffiffiffiffiffiffiffi
4Dt

p � 1

3

zffiffiffiffiffiffiffiffi
4Dt

p
� �3

þ 1

10

zffiffiffiffiffiffiffiffi
4Dt

p
� �5

� � � �
" #

ð24Þ

in which erf( ) denotes the error function [11, chap 40]. There
is also interest in the concentration profile directly above the
edge itself, that is at x=0. One finds from Eq. (23) that

cð0; z; tÞ ¼
ffiffiffi
2

p
cb

p
exp

�z2

4Dt

� 	

X1
m¼1;3;:���

ð�ÞIntfðm�1Þ=4g *ðm=4Þ
m*ðm=2Þ

z2

4Dt

� �m
4

M 1þ m
4
; 1þ m

2
;

z2

4Dt

� �

¼
ffiffiffi
2

p
cb

p3=2

*ð14Þ zffiffiffiffiffiffi
4Dt

p
� �1=2

þ 2*ð34Þ
3

zffiffiffiffiffiffi
4Dt

p
� �3=2

� *ð14Þ
10

zffiffiffiffiffiffi
4Dt

p
� �5=2

� � � �

2
664

3
775

ð25Þ
A diagram illustrating Eq. (25) appears later in this article.
Note an important distinction between the last two equations.
Whereas in (24), remote from the edge, the concentration
profile obeys a polynomial expansion in odd powers of
z
� ffiffiffiffiffiffiffiffi

4Dt
p

, the powers involved at the edge are half-odd
powers. One consequence of this is that the concentration
gradient (and thence the current density) is infinite at the edge.

Figure 3 is a three-dimensional plot of Eq. (23). It suggests
that the infinite concentration gradient is restricted to the
(x, z)=(0, 0) line, and this is confirmed by the expansions

c x; z; tð Þ
cb

¼
ffiffiffiffiffi
X

p3

r * 1
4


 �þ 2* 3
4


 �
X þ O X 2ð Þ� �

z
x

� * 1
4ð Þ
8 � * 3

4ð ÞX
12 þ O X 2ð Þ

� 	
z3

x3 þ O z5

x5

� �
2
64

3
75

ð26Þ
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and

c x; z; tð Þ
cb

¼
ffiffiffiffiffiffiffiffi
�X

p3

r 2* 1
4


 �� 4* 3
4ð ÞX
3 þ O X 2ð Þ

þ * 1
4ð Þ
4 � * 3

4ð ÞX
2 þ O X 2ð Þ

� 	
z2

x2

� 5* 1
4ð Þ

64 þ * 3
4ð ÞX
32 þ O X 2ð Þ

� 	
z4

x4 þ O z6

x6

� �

2
666664

3
777775

ð27Þ

describing the concentration profiles close to the edge on the
conductor and insulator sides, respectively. In these equa-
tions, and elsewhere, X is used to abbreviate x

� ffiffiffiffiffiffiffiffi
4Dt

p
; x

being negative in (27). Notice that, as might have been
expected, only odd powers of z appear in (26), whereas only
even powers (including zero) are found in (25). It is amazing
that, as x approaches zero from either direction, each of Eqs.
(26) and (27) passes smoothly into (25).

Embodied in Eq. (23) is the requirement that there is no
flux of the electrolabile species across the insulating, x<0,
portion of the electrode surface, whereas there is such a flux
across the conducting, as x>0, portion. The latter flux is
proportional to the current density, as we show in the next
section.

Excess current from the straight edge, by mathematical
analysis

In this section, analytical techniques will be used to
evaluate the current density, and thence the current, flowing
to the straight-edged electrode. This evaluation will be
based on the analytical results from the previous section,

but subsequently we will derive similar results by digital
simulation. The current will be shown to contain a
cottrellian portion and a “prompt” component, proportional
to the length of the edge.

Differentiation with respect to z of Eq. (23) yields

@c
@z x > 0; z ¼ 0; tð Þ ¼ cb

px exp
�x2

4Dt

� �
P1

m¼1;3;���

* 1
4mð Þ

* 1
2mð Þ

x2

4Dt

� �m=4
M 1þ m

4 ; 1þ m
2 ;

x2

4Dt

� �

ð28Þ
after z is set to zero. A second representation of this result is

@c

@z
x > 0; z ¼ 0; tð Þ ¼ cbffiffiffiffiffiffiffiffiffiffi

4pDt
p exp

�x2

8Dt

� �
X1

m¼1;3;���
Im
4�

1
2

x2

8Dt

� �
þIm

4þ
1
2

x2

8Dt

� �

ð29Þ
a third, incorporating an integral that involves the Macdon-
ald function [11, chap 51] of one-quarter order, is

@c

@z
x > 0; z ¼ 0; tð Þ

¼ cbffiffiffiffiffiffiffiffi
pDt

p 1þ 1ffiffiffiffiffi
32

p
p

Z1
x2=8Dt

exp �lð Þ
l

K1=4 lð Þdl

2
64

3
75

ð30Þ
while a fourth, in which the X ¼ x

� ffiffiffiffiffiffiffiffi
4Dt

p
abbreviation is

reused,

@c

@z
x > 0; z ¼ 0; tð Þ ¼ cbffiffiffiffiffiffiffiffiffiffi

4pDt
p

ffiffiffiffiffiffi
2=X

p
* 3

4ð Þ
P1
j¼0

�1
4ð Þ

j
1
4ð Þj �X 2ð Þj

1
2ð Þj 3

4ð Þj 1ð Þj

þ
ffiffiffiffiffiffi
X=2

p
* 5

4ð Þ
P1
j¼0

1
4ð Þj 3

4ð Þj �X 2ð Þj
1ð Þj 5

4ð Þj 3
2ð Þj

2
6664

3
7775

ð31Þ

incorporates a pair of hypergeometric functions [11, chap 18].
Surprisingly, this disparate quartet of representations can be
confirmed to be identical numerically. All four expressions
approach the cottrellian formula cb

� ffiffiffiffiffiffiffiffi
pDt

p
at large x and, in

accord with Eq. (25), become infinite at x=0.
Formula (30) is especially suitable for expressing the

difference between the concentration gradient and that for
the cottrellian case. One thereby finds that

@c

@z
x > 0; z ¼ 0; tð Þ � @c

@zcot
z ¼ 0; tð Þ

¼ cbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32p3Dt

p
Z1

x2=8Dt

exp �lð Þ
l

K1=4 lð Þdl

ð32Þ
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Fig. 3 A three-dimensional plot showing the distribution of concen-
tration close to a totally concentration-polarized straight edge.
Insulator occupies the half-plane z=0, x<0, the conducting portion
of the electrode being z=0, x>0. The axes, labeled X, Z, and γ, are
x
� ffiffiffiffiffiffiffiffi

4Dt
p

, z
� ffiffiffiffiffiffiffiffi

4Dt
p

, and c
�
cb
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represents the additional current density due to the
proximity of the straight edge.

If the electrode reaction involves a single electron, then
by Fick’s first and Faraday’s laws, the current density i(x, t)
may be found by multiplying the concentration gradient at
the conductor surface by the diffusivity D and Faraday’s
constant F:

i x; tð Þ ¼ FD
@c

@z
x; 0; tð Þ ð33Þ

Figure 4 plots the ratio of this current density to the
cottrellian current density, the latter being

icot tð Þ ¼ Fcb
ffiffiffiffiffi
D

pt

r
ð34Þ

[12] and shows how the ratio varies with distance from the
edge. Notice that the current density departs significantly from
its cottrellian value only over a strip of about 3

ffiffiffiffiffi
Dt

p
width.

Recognize that, although the current density at the edge is
infinite, this is still a trivial contribution to the current
enhancement. Notwithstanding the title given to this section,
the excess current arises from the narrow strip fringing the
edge, not “from” the edge itself.

Multiplying equation (32) by FD leads to the formula

i x; tð Þ � icot tð Þ ¼ Fcb
ffiffiffiffiffiffiffiffiffiffiffiffi
D

32p3t

r Z1
x2=8Dt

exp �lð Þ
l

K1=4 lð Þdl

¼ icot tð Þffiffiffiffiffi
32

p
p

Z1
x2=8Dt

exp �lð Þ
l

K1=4 lð Þdl

ð35Þ
Our prime interest is in the magnitude of the excess current,
over and above the cottrellian contribution, arising from this

current density. To find this excess current, to which we give
the symbol Î tð Þ, one first needs to integrate the expression in
(35) between the limits of x=0 and x=∞, as the shading in
Fig. 4 suggests. The result is remarkably simple

Z1
0

i x; tð Þ � icot tð Þ½ �dx ¼Fcb
ffiffiffiffiffiffiffiffiffiffiffiffi
D

32p3t

r Z1
0

Z1
x2=8Dt

exp �lð Þ
l

K1=4 lð Þdldx

¼ FcbD

2

ð36Þ
This result has been obtained before [6] while Gavaghan and
Rollett [17] approached the problem differently. The quantity
in Eq. (36) is a lineal current density, with the ampere per
meter unit. To obtain the excess current Î tð Þ itself, this lineal
current density must be multiplied by the length : of the edge
fragment, corresponding to the chosen interval in the y
direction. This choice leads to a current

Î tð Þ ¼ FcbD‘

2
ð37Þ

Note the time independence of this excess current. It appears
at the instant t=0 and continues constantly thereafter, earning
it the title “prompt current” [12]. It should be appreciated
that this is an exact result. The current from a straight-edged
electrode consists solely of the cottrellian current plus the
prompt current given by (37); these are not just the first two
terms in an expansion. However, it is to be expected that
curvature in an edge will introduce one or more additional
time-dependent terms. The search for these terms starts with
the next section.

Concentrations near edges of any curvature,
by simulation

Our focus now shifts to the edges diagrammed as (i) and
(iii) in Fig. 1, though the simulation described below also
serves case (ii), the straight edge. A comparison of our
modelling results detailed here, with the analysis carried out
in earlier sections, will validate the simulation procedure.

Previously in this study, cartesian and polar coordinates
have been employed but now we turn to cylindrical
coordinates, in which Fick’s second law is

1

D

@c

@t
r; z; tð Þ ¼ r2c r; z; tð Þ

¼ @2c

@r2
r; z; tð Þ þ 1

r

@c

@r
r; z; tð Þ þ @2c

@z2
r; z; tð Þ

ð38Þ
This is the most appropriate coordinate system for treating
the curved edges shown in diagrams (i) and (iii) of Fig. 1.
In application to curved edges, r represents distance

Fig. 4 The current density close to a straight edge normalized by
division by the cottrellian current icot. The shaded area corresponds to
the “excess current”Î t; iið Þ ascribable to the edge
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measured from the edge’s centre of curvature. We can adapt
Eq. (38) better to suit our purpose by replacing r by x�
1=kð Þ for case (i) and case (iii), x being the distance
coordinate identified in Fig. 1. With this definition,
differential equation (38) becomes

1

D

@c

@t
ðx; z; tÞ ¼ @2c

@x2
ðx; z; tÞ � k

1� kx
@c

@x
ðx; z; tÞ þ @2c

@z2
ðx; z; tÞ
ð39Þ

this equation being applicable not only to both curved
cases, but also to case (ii). The inclusion of the straight
edge case arises because, when κ=0, the term in this
equation representing the cylindricity of the system dis-
appears, leaving the cartesian version of Fick’s second law.
Thus, Eq. (39) applies to all three of the geometries in
Fig. 1. In this equation, x=0 corresponds to the edge, x<0
to the domain over the insulator, and x>0 to the domain
over the conductor.

Because a representation in cylindrical coordinates is
then no longer appropriate, Eq. (39) ceases to make sense
where x>1/κ for case (i), or where x<1/κ for case (iii).
This is not a limitation in the present study, however,
because our interest is confined to the narrow fringes of
insulator and conductor on either side of the edge.

The initial condition,

c x; z; tð Þ ¼ cb; 0 < z � 1; all x; t � 0 ð40Þ
prescribing a preexisting concentration uniformity, applies.
The crucial boundary conditions are

c x; 0; tð Þ ¼ 0 x > 0; t > 0 ð41Þ
and

@c

@z
x; 0; tð Þ ¼ 0 x < 0; t > 0 ð42Þ

which respectively assert that the electrolabile species is
absent from the electrode surface and has no flux across the
insulator surface.

An analytical solution may exist to the equation set (39)–
(42) but, at this juncture, we have found it only for the κ=0
instance, as reported above. Therefore, we turn to digital
simulation and seek an approximate prediction. As in most
simulations [14], the first and second steps are to
undimension and then discretize the variables. The three
independent variables and the one dependent variable are
undimensioned through the definitions

t ¼ Dt

‘2
; z ¼ z

‘
; # ¼ x

‘
and g #; z; tð Þ ¼ c x; z; tð Þ

cb

ð43Þ
Note that χ cannot exceed 1/κ : in case (i) and must exceed
−1/κ : in case (iii), there being no restriction in case (ii).
These constraints arise because it is implicit in Eq. (39) that

r be non-negative. For the sake of uniformity, the condition
�1= kj j‘ð Þ < # < 1= kj j‘ð Þ is applied universally in this
section and, in view of the standard length : that we adopt,
this implies that our simulation domain occupies the region

�1 < # < 1 ð44Þ
Adoption of the dimensionless terms defined in (43)
converts the differential equation (39) into

@2g
@#2

#; z; tð Þ � k‘
1� k‘#

@g
@#

#; z; tð Þ þ @2g

@z2
#; z; tð Þ

� @g
@t

#; z; tð Þ ¼ 0

ð45Þ
while its attendant conditions, stemming from formulas
(39–42) become

g #; z; 0ð Þ ¼ 1 � 1 < # < 1; z > 0 ð46Þ

g #; 0; tð Þ ¼ 0 0 <#< 1; t > 0 ð47Þ
and

@g
@z

#; 0; tð Þ ¼ 0 � 1 < # < 0; t > 0 ð48Þ

It is this set of equations that is modelled for each of the
three cases, with κ : set to 1, 0, or −1 for cases (i), (ii), and
(iii), respectively.

Discretization of the four dimensionless variables is
accomplished by the replacements

t ) kd; z ) m$; # ) n$; and g #; z; tð Þ ) gn;m;k

ð49Þ

in which variables that actually change continuously are
substituted by quantities whose values change stepwise.
Here k ¼ 1; 3; 5; � � � , m ¼ 1; 3; 5; � � �, and n ¼ � � � �
5;�3;�1;þ1;þ3;þ5; � � �. Note our addiction to odd
indices. The dimensionless δ and Δ quantities are small
time and distance units respectively, of arbitrary magnitude.
We choose Δ to be the reciprocal of a large even integer,
typically 1,000 and, for a reason discussed later, we set δ=
2Δ2/5.

For simplicity, and in line with a philosophy enunciated
earlier [15], we employ the oldest, slowest, and most
elementary modelling technique: fully explicit finite-differ-
ence digital simulation. We toyed with non-uniform grids,
but discarded that computation-time-saving strategy in view
of the added complication. There are only three non-
standard features of our simulation. Our simulation is
“differential”, rather than absolute. The boundaries of our
active simulation space adapt to need. And our procedure
for fitting the concentration normal to the conductor surface
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is to an unusual “013 polynomial”. These three abnormal
features are elaborated below. The simulation was
programmed straightforwardly in Visual Basic® and exe-
cuted on a standard PC.

In addition to the two-dimensional array dedicated to the
modelling of the set of equations numbered (44) through
(47), we also employed a one-dimensional array whereby
we simulated the equation set

@2b

@z2
z; tð Þ � @b

@t
z; tð Þ ¼ 0 ð50Þ

b z; tð Þ ¼ 1 0 < z < 1; t ¼ 0 ð51Þ
and

b z; tð Þ ¼ 0 z ¼ 0; t > 0 ð52Þ
thereby modelling the Cottrell experiment. Here β signifies
the undimensioned cottrellian concentration (c/cb)cot, dis-
cretized as βm,k. The Cottrell simulation is run consecu-
tively with the two-dimensional simulation because interest
is in the difference between the two current densities.
Moreover, a comparison is continually made between
corresponding concentrations in the β and g arrays as a
means of economizing computation time, as described
below.

In the nomenclature of Britz [14], our simulation
employs the “point” method, rather than the “box” method,
though it does benefit from some of the advantages of the
latter by positioning the first sampling points in both the χ
and ζ directions at the half-standard distances of Δ. The
grid used in the simulation is shown in Fig. 5. In principle,
the simulation domain could extend limitlessly in the ζ
(upwards) direction and at least as far as n ¼ �1= kj j‘$ð Þ
in the ±χ (sideways) directions, but in practice only a much
smaller rectangular subset is employed in early simulation

cycles. The even integers L, M, and N (L is negative), which
delineate the boundaries of the simulation domain L<n<N,
0<m<M, are updated (incremented by 2 for M and N, but
by −2 for L), if necessary, after each sequence of
concentration calculations, to meet the requirement that no
value of gL�1;m;k or bMþ1;k may differ from unity by more
than 0.01%, while gNþ1m;k may not differ from bm;k by a
similar percentage.

To discretize the first two terms in differential equation (45),
we follow a procedure that leads to results commonly
encountered in electrochemical simulations, though they are
generally derived differently. The quadratic function g ¼
a0 þ a1 #=$ð Þ þ a2 #=$ð Þ2 is fitted to the trio of concentra-
tion values gnþ2;m;k ; gn;m;k and gn�2;m;k . The resulting
function, namely

g � a0 þ
ð1� nÞgnþ2;m;k � ð1þ nÞgn�2;m;k þ 2ngn;m;k

4$
#

þ gm;nþ2;k þ gm;n�2;k � 2gm;n;k
8$2 #2

ð53Þ
(a0 is also calculable, but is unimportant) then serves to
model the horizontal distribution of the concentration. On the
assumption that this quadratic approximation applies ade-
quately in the vicinity of the (n, m, k) point, the discretization

@2g
@#2

� k‘
1� k‘#

@g
@#

� �
n;m;k

) 1

4$2

1� k‘$
1�nk‘$


 �
gnþ2;m;k � 2gn;m;k

þ 1þ k‘$
1�nk‘$


 �
gn�2;m;k

" # ð54Þ

follows. Note that, because of our chosen kj j‘ ¼ 1 standard,
the quantity k‘ in (54) and elsewhere always takes one of
the three values 1, 0, or −1 depending on the case in
question. Generally, a fit of three points to a quadratic

ζ

χ

m = 1

m = 3

m = 7

m = 5

m = M

2Δ

2Δ

Fig. 5 A small portion of the
grid used in the edge simulation.
The column indexed “n=∞” is
employed for modelling β, the
cottrellian concentrations. The
outer and upper simulation
bounds of the ranges L<n<N
and 0<m<M are shown in their
initial locations, but these are
continually updated as the sim-
ulation proceeds
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function also provides the basis for discretizing the third
term in differential equation (45). This leads to the
familiar result

@2g

@z2

� �
n;m;k

) gn;mþ2;k � 2gn;m;k þ gn;m�2;k

4$2 ð55Þ

To discretize the final right-hand term in Eq. (45), the
temporal derivative is replaced by a simple forward
difference quotient:

@g
@t

z; #; tð Þ ) gn;m;kþ2 � gn;m;k
2d

ð56Þ

This completes the tally of terms in Eq. (45) for which we
have derived discretized equivalents. Putting them all
together leads, after rearrangement, to

gn;m;kþ2 ¼ gn;m;k þ
d

2$2

c1gnþ2;m;k þ c2gn�2:m:k þ c3gn;mþ2;k

þc4gn;m�2;k � c5gn;m;k

� 

ð57Þ

with the coefficients c1,2,–,5 given the values listed in the first
row of Table 1. Equation (57) shows how, during an interval
of duration 2δ, each typical point interacts diffusionally with
its four neighboring points (in reality each “point” is a
fragment of a circular hoop, except for the straight-edge case,
in which it is a straight line fragment). The formula must be
modified when m=1, because such points have only three
neighbors. There are two revised formulas, depending on
whether the m=1 point is adjacent to the insulator or the
conductor. These revisions are discussed in the next paragraph
and the resulting coefficients are presented as the second and
third rows of Table 1. The final two rows in the table provide
coefficients for the corresponding terms in the β-updating
formulas.

Points for m=1 have only three neighbors because of the
proximity of the insulator or the conductor. For the points
adjacent to the insulator, the replacement formula, incorpo-
rated into the second row of Table 1, was constructed
straightforwardly by discretizing the @2g

�
@z2 term and

assigning a concentration gradient of zero to a fitted
quadratic at ζ=0. For those m=1 points adjacent to the
conductor, we discretized the @2g

�
@z2 portion of Eq. (45)—

and also the @2b
�
@z2 term in (50)—by abandoning

quadratic fitting in favor of a fit to the

g ¼ b0 þ b1
z
$
þ b3

z
$

� �3

ð58Þ

polynomial. Our preference for this “013 polynomial”
derives from the match that it provides to the second and
third terms in Eq. (26). To obtain a good match to reality in
the region adjoining the conductor is crucial, because this is
the region from which the faradaic current arises. The b
coefficients can be evaluated by fitting to the m=1 and m=
3 points and constraining the polynomial to pass through
zero at ζ=0. With 013 polynomial fitting, this leads to the
simulation formula

@2g

@z2

� �
n;1;k

) gn;3;k � 3gn;1;k
4$2 ð59Þ

Had we used the customary quadratic (or “012 polynomial”)
fit, the “4” in (59) would have been replaced by a “3”. This
provides the basis for the third row of entries in Table 1. It
may seem irrational to use a 013 polynomial to fit the
vertical concentration profile in the vicinity of the m=1
point, but revert to the quadratic fit for m=3, 5, –.
Surprisingly, however, both the 012 and 013 polynomials
lead to identical formulas, namely Eq. (55), at points other
than those adjacent to the electrode.

There is danger of instability in a simulation if the
coefficient of any concentration term in the concentration-
updating equations is negative. In our particular problem,
this implies that 1� c5d

�
2$2


 � � 0. This consideration
dictated our choice of d ¼ 2$2

�
5 as the relationship

between the magnitudes of the dimensionless time and
distance units.

To validate our simulation, we compared concentra-
tions calculated exactly from the mathematical theory
with those generated by simulation for the straight edge,
case (ii). Because it is the most crucial location for the
simulation, and this is where the largest discretization
errors might be expected, we chose to compare at the
edge itself, where x=χ=0. Figure 6 makes the compari-
son. The line in this figure is calculated from the full Eq.

Table 1 Coefficients of the five terms in Eq. (57) during the simulation of the points indexed n and m

n m c1 c2 c3 c4 c5

Lþ 1; � � � ;�3;�1; 1; 3; � � � ;N � 1 3; 5; � � � ;M � 1 1� k‘$
1�nk‘$ 1þ k‘$

1�nk‘$ 1 1 4
�1;�3; � � � ; Lþ 1 1 1� k‘$

1�nk‘$ 1þ k‘$
1�nk‘$ 1 No such point 3

1; 3; � � � ;N � 1 1 1� k‘$
1�nk‘$ 1þ k‘$

1�nk‘$ 1 No such point 5
∞ 3; 5; � � � ;M � 1 No such point No such point 1 1 2
∞ 1 No such point No such point 1 No such point 3

The final two rows relate to the one-dimensional simulation of concentration β
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(25). Because our simulation uses no points at χ=0, the
dots represent the average of the simulated concentrations
for points indexed n=−1 and n=+1. There are small
discrepancies between theory and simulation, particularly
at small ζ, but the general agreement gave us the
confidence to proceed.

Concentration gradients at the conductor surface follow
directly from differentiating the fitted 013 polynomials and
then substituting ζ=0. As our interest is in the difference
between the edged cases and the unedged (cottrellian) case,
it is the difference, namely

@g
@z

� �
n;0;k

� @b
@z

� �
0;k

) 27 gn;1;k � b1;k

 �� gn;3;k þ b3;k

24$

ð60Þ

in the concentration gradients that is calculated. The
influence of using the 013 polynomial is pronounced here.
Had we employed a quadratic fit, the “27” and “24” in
expression (60) would have been “9” and “6”.

To reestablish contact with reality, let us clarify exactly
what (60) means. The right-hand side of this expression is a
model intended to supply approximate values of the
difference between the undimensioned concentration gradi-
ent on the conductor surface at a finite distance x from the
edge and the corresponding (cottrellian) value remote from
the edge. Slightly different values result from the three
different cases and they arise by ascribing different values
(1 or 0 or −1) to k‘. All three cases are simulated in our
study. Translating to physical variables

‘

cb
@c

@z
x; z ¼ 0; tð Þ � @c

@zcot
z ¼ 0; tð Þ

� 


) 27 gn;1;k � b1;k

 �� gn;3;k þ b3;k

24$

ð61Þ

It is the quantities 27 gn;1;k � b1;k

 �� gn;3;k þ b3;k

� ��
24$ð Þ

that, for all positive odd n less than N and each selected k,
are the outputs of the simulation, but they are not saved as
such. Instead, each value of (61) becomes a component of
the weighted sum

2$
XN�1

n¼1;3;���
Wn;k

27 gn;1;k � b1;k

 �� gn;3;k þ b3;k

24$
ð62Þ

For most values of n, the weights Wn,k are given by the very
elaborate formula

Wn ¼
ffiffiffi
n

p
1� ðn� 1Þk‘$½ �ffiffiffi
n

p � ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 2n

p
1� 2n� 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 2n

p

3
k‘$

" #

�
ffiffiffi
n

p
1� ðnþ 1Þk‘$½ �ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p � ffiffiffi
n

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 2n

p
1� 2nþ 2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 2n
p

3
k‘$

" #

n¼ 5; 7; 9; � � � ;N � 3

ð63Þ
the origin of which is explained in the next section. The
sources of the abnormal weights, which are

W1 ¼ 3ffiffiffi
3

p � 1

1

2
� k‘$

4

� 

ð64Þ

W3 ¼ 3ffiffiffi
3

p � 1

ffiffiffi
3

p

2
� 1�

ffiffiffiffiffi
27

p � 4

4
k‘$

� 


�
ffiffiffi
3

p
1� 4k‘$½ �ffiffiffi
5

p � ffiffiffi
3

p þ
ffiffiffiffiffi
15

p
1� 8þ ffiffiffiffiffi

15
p

3
k‘$

� 

ð65Þ

and

WN�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
1� ðN � 1Þk‘$½ �ffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p � ffiffiffiffiffiffiffiffiffiffiffiffi

N � 3
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � 4N þ 3

p

	 1� 2N � 4þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � 4N þ 3

p

3
k‘$

" #
ð66Þ

are also explained below. The purpose of the weighting is
to prepare the concentration-gradient differences for subse-
quent conversion to a current, as described in the next
section. Only the sums of the weighted quantities are
retained by the program.

Excess current from curved edges, via simulated
concentrations

Our attention in this section is directed first to the excess
current density, beyond that for the cottrellian case,

0.0 0.5 1.0 1.5
0.0

0.5

1.0

/ 4z Dt

b

(0, , )c z t

c

Fig. 6 A simulation/theory comparison of the concentration profile
above the straight-edge junction between the conducting portion of an
electrode and its adjoining coplanar insulator. The full curve is by Eq.
(25), points are based on the simulation
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flowing across the conductor surface at a distance x from
the edge and at a time t after the potential jump. We shall
represent this current density difference by the “hatted”
symbol

îðx; tÞ ¼ iðx; tÞ � icotðtÞ ¼ iðx; tÞ � Fcb
ffiffiffiffiffiffiffiffiffiffi
D=pt

p
ð67Þ

Though the cottrellian current density is known analyti-
cally, it is the simulated version that is subtracted, the
better to compensate for discretization errors. Mostly, we
work with a dimensionless current density difference,
undimensioned by division by FcbD / : and represented by
a hatted iota symbol. Because we are treating a one-
electron reaction, multiplication by FD is all that is
required to convert an electrode-surface concentration
gradient into a current density; thus:

î #; tð Þ ¼ ‘ î x; tð Þ
FcbD

¼ ‘

cb
@c

@z
x; z ¼ 0; tð Þ � @c

@zcot
z ¼ 0; tð Þ

� 

ð68Þ

Each of our simulations generates a set of values of îð#; tÞ
at χ values of $; 3$; 5$; � � � ; n$; � � � and at a set of τ
values equal to kδ for odd integers k. Members of this
discrete set of discretized undimensioned current density
differences are symbolized în;k . Thus, from Eqs. (67) and
(61),

în;k ¼
27 gn;1;k � b1;k


 �� gn;3;k þ b3;k
24$

ð69Þ

Prior to weighting, the output of the simulation is simply
the undimensioned current density difference, and so a set
of values of î 7 ; tð Þ at χ values of $; 3$; 5$; � � � ;
n$; � � � is accessible for a set of τ values equal to kδ for
odd integers k.

Areal integration is required to convert the excess
current density into the excess current Î tð Þ associated with
the edges. We make this conversion for the three cases,
symbolizing the results by Î t; ið Þ, Î t; iið Þ and Î t; iiið Þ. The
formula

Î tð Þ ¼ ‘

Z3 ffiffiffiffi
Dt

p

0

î x; tð Þ 1� kx½ � d x ¼ FcbD‘

Z3 ffiffi
t

p

0

î #; tð Þ 1� k‘#½ � d #

ð70Þ
applies, with the term [1−κx] allowing for the convergent
(case i), uniform (case ii), or divergent (case iii) integration
domain. The upper integration bound reflects the finding
from Fig. 4 that the width of the strip fringing the straight
edge over which the cottrellian current is augmented is
approximately 3

ffiffiffiffiffi
Dt

p
. In practice, our integration uses the

entire conductor surface 0 � # � N � 1ð Þ$ of the model,
stopping only when the numerical values of the concentra-
tion prove to be insignificantly different from the cottrellian
concentrations.

The integration in (70) is performed by breaking the
integration range into a collection of segments, each of
width 2Δ, except for the first, which is 3Δ wide:

Î tð Þ
FcbD‘

¼
ZN$

0

î #; tð Þ 1� k‘$½ �d#

¼
Z3$
0

î #; tð Þ 1� k‘$½ �d#þ
XN�3

n¼3;5;���

ZnΔþ2$

n$

î #; tð Þ 1� k‘$½ �d#

ð71Þ

Because, as Fig. 4 shows, the excess current density
changes so dramatically with distance from the edge, we
must interpolate carefully between the simulated values,
and extrapolate shrewdly into the space between the edge
and the n=1 point, prior to performing the integration. A
vehicle for the interpolation is provided by Eq. (26), which
shows, at least for the straight-edge case, that the
expression for the current density as a function of x has a
leading term in x−1/2. Moreover, the cottrellian subtractive
contribution to î is, of course, x-independent. So we base
our fitting on the formula

î #; tð Þ ¼ constantð Þ þ another
constant

� � ffiffiffiffi
$

#

s
ð72Þ

and fit a relation of this form between consecutive positive
odd n values. Each relation is designed to adopt the
simulated values în;k and înþ2;k at either end of the
segment. This is achieved by the formula

îð#; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p
înþ2;k �

ffiffiffi
n

p
în;k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 2n

p ½̂in;k � înþ2;k �
ffiffiffiffiffiffiffiffiffi
Δ=#

p
ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p � ffiffiffi
n

p

ð73Þ

After multiplication by the 1−k‘# factor, definite integra-
tion now gives

Zn$þ2$

n$

îð#; tÞ 1� k‘#½ �d#

¼ 2$

ffiffiffiffiffiffi
nþ2

p
înþ2;k�

ffiffi
n

p
în;kffiffiffiffiffiffi

nþ2
p � ffiffi

n
p 1� ðnþ 1Þk‘$½ �þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 2n
p ½̂in;k � înþ2;k � 1� 2nþ 2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 2n
p
 �

k‘$
3

� �
2
4

3
5

ð74Þ

This integral may be written concisely as

Zn$þ2$

n$

î #; tð Þ 1þ k‘#½ � d # ¼ 2$ Rnþ2înþ2;k þ Snîn;k
� � ð75Þ
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where the R and S quantities may be gleaned from the right-
hand side of formula (74). A careful regrouping of a
collection of these integrals produces

XN�1

n¼3;5;���

Zn$þ2$

n$

î #; tð Þ 1� k‘#½ � d #

¼ 2$ RN�1îN�1;k þ S3 î3;k þ
XN�1

n¼5;7;���
Rn þ Snð Þîn;k

" #

ð76Þ
The sum Rn+Sn is, in fact, the weighting factor denoted Wn

in Eq. (63). The solitary RN−1 term leads to (66). The 0<χ
<3Δ integral in (70) contributes far more than any other
segment. It has to be treated somewhat differently because,
though the integral is finite, the integrand is infinite at its
lower bound. Accordingly, the fitting to (71) is provided by
the î1;k and î3;k values, which leads to

Z3$
0

î #; tð Þ½1� k‘#�d#

¼ 3$ffiffiffi
3

p � 1

ffiffiffi
3

p
� 2�

ffiffiffiffiffi
27

p

2
� 2

� �
k‘$

� 	
î3;k þ 1� k‘$

2

� 	
î1;k

� 


ð77Þ
The coefficient of î1;k in this formula is the source of the W1

term in Eq. (64), while the coefficient of î3;k , added to S3,
gives W3 in (65).

Thus it is that a suitably weighted sum of the
dimensionless concentrations provides the following ex-
pression for the dimensionless excess current:

Î tð Þ
FcbD‘

)
XN�1

n¼1;3;���
Wn

27gn;1;k � 27b1;k � gn;3;k þ b3;k
12

ð78Þ
This model is valid for all three cases. For the straight-
edge case, the value predicted in Eq. (37) for this
dimensionless excess current is 1/2. Using expression
(78), the simulation produces values somewhat larger than
this, but as the time counter k increases, the values
reassuringly approach 0.50. There is no direct interest in
simulating currents at the straight edge, however, because
the exact theory earlier in this article is unequivocal: the
current beyond the cottrellian is solely the prompt current,
common to all edges:

Î t; iið Þ ¼ FcbD

2
‘ ð79Þ

The excess current is proportional to the length of the edge
and to the diffusivity, but time independent.

The motivation for our work is primarily to investigate
curved edges, for which no theory presently exists. We seek
to find the faradaic current generated by concave and
convex edges, over and above the contribution from
cottrellian and prompt currents. This is not an easy task,
for it is a third order effect that we wish to measure.
Therefore, a differential approach is again adopted, in the
hope that discretization errors will mostly cancel. Instead of
evaluating how the excess current at a curved edge changes
with time, we measure the difference between the currents
at curved edges and those at a straight edge. Three
simulations were made, Eq. (78) then being used to
compute values of the differences Î t; ið Þ � Î t; iið Þ and
Î t; iiið Þ � Î t; iið Þ undimensioned, in each case, by division
by FcbD‘. These values are shown plotted versus

ffiffiffi
k

p
$ in

Fig. 7. Plotting versus
ffiffiffi
k

p
$ is equivalent to plotting versus

the square root of time.
The figure shows that, initially, there is no voltammetric

difference between straight and curved edges: they share
identical prompt currents. It also shows that additional
current flows from curved edges, compared to straight
edges, the extra current being positive for concave edges
and negative for convex edges. The differences from the
straight edge are approximately equal in magnitude, though
opposite in sign, showing that the additional current (called
the “augmentative current” in the next section) is propor-
tional to the curvature of the edge. Furthermore, Fig. 7
demonstrates that the augmentative current increases as the
square root of time. Arguing from the established properties
of concave circular edges, as discussed in the next section,
we expected the augmentative slope to equal k=4ð Þ ffiffiffiffiffiffiffiffiffiffi

Dt=p
p

,
and the straight lines in the figure correspond to such a
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Fig. 7 Graphs of the concavely curved-minus-straight-edged and
convexly curved-minus-straight-edged currents plotted versus the
square root of time, both the ordinate and the abscissa being suitably
normalized. The points are derived from simulation, the straight lines
represent expectations
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value. Though we could have wished for better, we
consider that the agreement between the lines and the
points is adequate to confirm our expectation.

Conclusions and applications

We conclude that the response of an edge fragment to a
potential jump is the sum of two terms, each proportional to
the length of the curve, the second term also being
proportional to the curvature of the edge and to the square
root of time:

Î tð Þ
FcbD

¼ ‘

2
þ k‘

4

ffiffiffiffiffiffi
Dt

p

r
ð80Þ

The second right-hand term is positive for concave edges,
negative for convex edges, and absent for straight edges.
We use the names “prompt” and “augmentative” to
distinguish the currents, the latter name reflecting the
property of increasing with time, in contrast to the
constancy of the prompt current and the evanescent nature
of the cottrellian current.

In the context of partially blocked electrodes, edges will
rarely have uniform curvature, but they will generally be
“closed”. That is to say edges will enclose “islands” of
either insulator or conductor, as portrayed by (a) and (b) in
Fig. 8. The integral of the curvature around a closed curve
is the overall angle turned, that is 2π, and therefore the
excess current arising from an island is given by

Îisland tð Þ
FcbD

¼ ‘

2
þ

ffiffiffiffiffiffiffiffi
pDt

p

2

I
k d ‘ ¼ ‘

2
�

ffiffiffiffiffiffiffiffiffiffi
p3Dt

p
ð81Þ

where the “+” sign in the augmentative term applies to an
island of conductor in a “sea” of insulator, and the “−” sign
to an island of insulator in a sea of conductor. Interestingly,
an “atoll” geometry, as in Fig. 8c, contributes nothing to the
augmentative current.

We view Eqs. (80) and (81) as temporary descriptors
of the chronoamperometric behavior of edges. They
become increasingly suspect as time increases. They
were derived for isolated edge fragments and ignore any
influence that one fragment may have on another.
We call any such influence a “proximity effect”; item
(d) in Fig. 8 illustrates three circumstances in which this

Fig. 9 A diagram showing the contribution of various currents to the
total chronoamperometric current at an inlaid disk electrode, as time
unfolds. The cottrellian current arises from the surface of the
electrode, whereas the prompt current is from its perimeter. The
augmentative current has its origin in the curvature of the electrode
edge. The “proximity current”, which is negative, arises from
competition for diffusant between different regions of the edge

(b)(a)

(c)

(d)

Fig. 8 Models of partially
blocked electrodes. In all four
diagrams, hatching represents
conducting regions of the sur-
face, insulating regions being
shaded grey. (a) represents an
“island” of insulator, while (b) is
a conducting island. The “atoll”
topology of (c) has an island of
insulator within an island of
conductor, which is itself within
a “sea” of insulator. The geom-
etry of the island in (d) results in
three places at which proximity
effects will diminish the edge
current
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effect would be especially severe, limiting the upper
time limit for the validity of Eqs. (80) and (81).
Proximity always decreases the current because two
edges are then competing for the diffusing species, so
that each goes hungry to some extent. Though it is a crude
estimate, proximity effects come into play when the two
interfering edges are at a distance of less than about 3

ffiffiffiffiffi
Dt

p
from each other.

The only curved edge that has been studied deeply by
electrochemists is that separating the conductor and the
insulator surfaces in the popular inlaid disk electrode. If
such an electrode has a radius a, the conductor has an area
α of πa2; the edge has a length : of 2πa and a curvature κ
of 1/a. There is no single exact theoretical equation known
to describe the one-electron diffusion-controlled current at
this electrode, but the five-term expansion

Idisk tð Þ
FcbD

¼ a2
ffiffiffiffiffiffi
p
Dt

r
þ paþ

ffiffiffiffiffiffiffiffi
pDt

p

2
� 3pDt

25a
þ 3p

ffiffiffiffiffiffiffiffiffi
D3t3

p

226a2
ð82Þ

is known [16] to be valid to parts-per-million accuracy for
times up to t=1.281a2/D. When rewritten as

Idisk tð Þ
FcbD

¼ affiffiffiffiffiffiffiffi
pDt

p þ ‘

2
þ k‘

4

ffiffiffiffiffiffi
Dt

p

r
� 3pDt

25a
þ 3p

ffiffiffiffiffiffiffiffiffi
D3t3

p

226a2
ð83Þ

the first three right-hand terms can be immediately
identified as the cottrellian, prompt, and augmentative
currents, respectively, while the last two can be assigned
to the proximity effect. It is instructive to assess the relative
importance of the various currents for the inlaid disk
electrode; this is accomplished in Fig. 9. Note that the
prompt current is dominant for most of the time, empha-
sizing the importance of the edge in the voltammetry of this
electrode. Beyond the confines of the graph, the prompt
current retains its dominance and eventually contributes
79% of the steady-state current.

Other authors [2, 3] have idealized the geometry of
partially blocked electrodes by likening them to structures
with uniformly sized, neatly arranged shapes on the surface
of an otherwise naked electrode. But, without making any
preassumption whatsoever about the geometry of a partially
blocked electrode, what can be learned from analyzing its
response to a potential jump?

Let us suppose that the capacitive current has been
carefully eliminated (it, too, can throw light on the
geometry of a partially blocked electrode, but that is
another story) and that the remaining faradaic response
has been analyzed to find the magnitudes of the compo-
nents with t�1=2; t0; and t1=2 time dependences:

I tð Þ ¼ pffiffi
t

p þ qþ s
ffiffi
t

p þ � � � ð84Þ

Clearly, the component with t−1/2 dependence may be used
to find the total area occupied by conductor, because

comparison with the prediction of Cottrell’s equation shows
that

total conductor area ¼
ffiffiffiffi
p
D

r
p

Fcb
ð85Þ

The total length of the interfacial lines separating insulator
from conductor is directly accessible from the prompt
current. One has

total edge length ¼ 2q

FcbD
ð86Þ

If the ratio of total conductor area to the overall electrode
area A is small, then it is reasonable to assume that the
conductor forms islands in a sea of insulator, and that
therefore s will be positive. On the other hand, if the
conductor area is close to A, then the islands will likely
contain insulator and s will be negative. In either event,
one can calculate the number of islands from the
magnitude of the augmentative current component by the
formula

number of islands ¼ sj j
Fcb

ffiffiffiffiffiffiffiffiffiffi
p3D3

p ð87Þ

and thence find the average area and perimeter of the
islands. For cases in which it is the conductor that
constitutes the islands, the formulas are

average island area ¼ total conductor area

number of islands

¼ p2pD
s

ð88Þ

and

average island perimeter ¼ total edge length

number of islands

¼ 2q
ffiffiffiffiffiffiffiffi
p3D

p

s
ð89Þ

Similar relationships apply when the islands are composed
of insulator. If both kinds of island exist, it is the
difference between the numbers that is significant.

Though relationships (85)–(89) are correct in principle,
experimental conditions will need to be favorable to allow
their successful exploitation. Being of third order, param-
eter s will be particularly difficult to measure. One feature
of the partially blocked geometry that may be assessed
without knowledge of s is the ratio of the area of an average
island to its perimeter:

average ðarea=perimeterÞ ratio ¼ p
ffiffiffiffiffiffiffiffi
p3D

p

2q
ð90Þ

This is a quantity with the unit of length and could be
considered to measure the “grain size” of the conductor/
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insulator mosaic. It will be large when the blocking is due
to structures of large size, small when it is some
microstructure that is responsible.
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